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A new BirkholT-type quadrature formula associated with the extended
ultraspherical nodes is obtained and applied to evaluate the second kind of
ultraspherical polynomials at the endpoints of the interval of orthogonality.
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1

For a given (X> -1 let {P~~)};;"~ 0 denote the system of ultraspherical
polynomials orthogonal in [-1, 1] with respect to the weight function
(1 - x 2 t and normalized by P~~)(1) = (n ~ ~). In [8] the second of us
obtained some new quadrature formulas based on the zeros

of
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In particular, it was proved in [8, p. 799] that the quadrature formula

is exact for all polynomials f of degree at most 2n - 1, and thereby
problems 36-39 in Turan [7J were solved.

The object of this paper is to find quadrature formulas analogous to
(1.1). Let us denote by

the zeros of (1 - x 2) p~a)(x), and let Akn' k = 1, 1,..., n, be the Cotes numbers
of the Gauss-Jacobi quadrature process associated with the ultraspherical
weight function, that is,

f
l p(al(x)

(a) _ n _ 2 a

Akn - .. (p(a)'(t ))(x- t ) (1 x) dx.
- I n kn kn

Our main result is the following

(1.2 )

THEOREM 1. For every a> -1 and n = 1,2,... the quadrature formula

r f(x)(1 - x 2)a dx
-I

- 22
" T(a + 1) T(a + 2) r(n + 1) _

(n - a-I )(2n + 2a + 1) T(n + 2a + 1) [f( 1) +f( -1)]

n(2n-l) ~ A( If( (»)
+ (n - a-I )(2n + 2a + 1) k::-I k~ tk~

2a(l+a) \.'!., Akn ()
(n - a -1 )(2n + 2a + 1) k-:I 1- (tk~l)d(tk~)

1 n

+2(n-a-l)(2n+2a+l)k~1 (l-tJ:,n2)Ai~)f"(ti~l) (1.3)

is exact for all polynomials f of degree at most 2n + 1.
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The proof of Theorem 1 is essentially different from the one given for
(1.1) in [8J, and the main idea of the proof is to apply the Gauss-Jacobi
quadrature formula [6, p.47J and Theorem 3 which is stated below.

Theorem 1 can be applied to evaluate the second kind of ultraspherical
polynomials at ± 1. Let us define the second kind of ultraspherical
polynomials Q~~) associated with P~~) by the formula

(1.4 )

It is well known that the second kind (or numerator) of polynomials Q~~)

satisfies the same recurrence formula which generates P~~) except that the
initial data are mo<)=O and Q~o<)=fiT(a+2)/r(a+~) (see, e.g.,
[2-4,6J). By the Gauss-Jacobi quadrature formula [6, p.47J we can
express (1.4) as

and applying (1.3) with f( t) == 1+ t we obtain after some elementary com­
putations the following

THEOREM 2. Let a> -1, :x = O. Then, for n = 1, 2, ...,

(+l)nQ(o<)(+I)= fi T(n+:X+1)_ 2
2
O<T(a+1) T(n+a+1

- n - aT(a+!) n! a r(n+2a+l)"

Remark. Theorem 2 may also be obtained from generating functions
for the second kind of ultraspherical polynomials [1,2]. This was pointed
out to us by both R. Askey and M. Ismail in independent private com­
munications. R. Askey has also informed us that a generalization of
Theorem 2 was proved in [9].

Some special cases of Theorem 1 deserve individual attention. Namely,
when a = -! then (1.3) becomes

71: n+ ~ (1- (t(-1/2»)2)f"(t(-1/2») (1.5)
2n 2(2n - 1) /::1 kn kn

640/50/2-4
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where tin 1/2) = cos(k -~) (n/n) are the zeros of the Chebyshev polynomials,
whereas for rx. = 0 formula (1.3) takes the form

[
' 1
. /(x) dx = -(n -1)(2n + 1) [f(l) +f( -1)]

2n(2n-l) 11 1 .

+ (n - 1)(2n + I) k~1 (1 - tkn)(P~(tkn)ff(tkn)
1 11 1

+(n-l)(2n+ 1) k~1 (P~(tkn))2f"(tkn) (1.6)

where t kn are the zeros of the Legendre polynomials P n == P~O).

The proof of Theorem 1 is based on the following

THEOREM 3. Let rx. > -1 and n = 1, 2, .... Then the quadrature formula

r/(x)(1 _x2)' dx

=22' (r(rx.+l))2r(n+l) [I(I)+j(-I)J
(2n + 20: + 1) r(n + 20: + 1)

+ (2n + ~rx. + 1) k~l (n + 1_ (~L~»)2) }~!c~) j(t!c~))
1 n

- " t(,l A(alj'(t(a») (1.7)
2n + 20: + 1 /:: I kn kn kn

holds for every polynomial f oj degree at most 2n + 1.

2

In this section we will prove Theorems 1 and 3. For the sake of brevity
we will omit some unessential indices in the formulas for example, we will
write }'k and tk instead of A!c~l and tL~l, respectively.

Proof of Theorem 3. Fix 0: > -1 and n = 1, 2, ..., and let j be an
arbitrary polynomial of degree at most 2n + 1. Then by the Hermite inter­
polation formula (see, e.g., [5 J)

n+l n

f(x) = I fUd rk(X) + L !'(td qk(X)
k=O k=1

(2.1 )



k =0, n + 1.
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where

ro(x) = (n: C€) -2 2 - 1(1 + X)(P~12)(XW,

rll+I(X)=C:C€) -2 2-1(l-X)(p~2)(X»2,

and for k = 1, 1,..., n

1+ Ck(X - td 2 2
rk(X)= 1 2 (l-x)lk(x),

- tk

tk
Ck = -20:--

I-tf

and

We. can apply (2.2), (2.3), and formula (4.33) in [6, p. 68J to obtain

r rk(x)(l - x 2r dx
~ 1

=222 (T(o:+l)fT(n+l)
(2n + 20: + 1) T(n + 20: + 1)'

It follows from (1.2), (2.7), and orthogonality relations that

r (x - (k) lk(x)(1- X2)2 dx =0
-I

and

137

(2.2)

(2.3 )

(2.4 )

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(\lk(X)(1-x2r dX= (1IHX)(l-X2)2dX=Ak (2.10)

for k= 1, 2,..., n. Applying (2.6), (2.7), and (2.9) we obtain

r Qk(x)(1-x2)"'dx
-I

= (1- m- I r (x- td(t~ _x2) 1~(x)(1-x2)2 dx
-I

= -(1-m-l(p~2)'(tk»~2r (x+td{P~"'){X))2(1-X2)2dx
-I
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and thus by (4.3.3) and (15.3.1) in [6, pp. 68 and 352, resp. J

for k = I, 2, ..., n. By (2.4), (2.5), (2.6), and (2.11) we have

f rk(x)(l-x2ydx
-I

=(I-tn If 1~(x)(I-lx2y+ldx
-1

k = 1, 2, ... , n. Using (2.7), (2.9), and (2.10) we get

f 1~(x)(l- x2t+ 1 dx
1

= f 1~(x)(l-t~+t~-x2)(I-x2tdx
-I

= (1- mAk - f I (x- tk)21~(x)(l-x2)'dx

= (1- mAk - (P~')(td)-2 f (P~')(X))2(1-X2)' dx
-I

(2.11 )

(2.12 )

and applying again (4.3.3) and (15.3.1) in [6J we obtain from (2.12)

f rk(x)(l-x2t dx
-1

(2.13 )

k = 1, 2, ..., n. Now Theorem 3 follows immediately from (2.1), (2.8), (2.11),
and (2.13).
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Proolol Theorem 1. Let us fix rt> -1 and n = 1,2,.... IfI is identically
1 then by the Gauss-Jacobi quadrature formula (1.3) becomes

f, (l-x
2

y dx

= _2 h + 1 T(rt+l)T(rt+2)T(n+1)

(n - e< - 1)(2n + 2e< + 1) T(n + 2rt + 1)

n(2n - 1) II
+ (l-x2y dx

(n - rt - 1)(2n + 2rt + 1) -I

2e«1+rt) n Ak------ L - (2.14)
(n - e< - 1)(2n + 2rt + 1) k ~ I 1 - tf

whereas by (1.7) and the Gauss-Jacobi quadrature formula

II 22a+'(r(rt+ 1))2 r(n+ 1)
(1 - x 2Y dx = --..:....-..:----'----'--'---.:....

_ I (2n + 2e< + 1) r(n + 2rt + 1)

2n II 2rt n A+ (1- X2)~ dx + L ~. (2.15)
2n + 2rt + 1_ 1 2n + 2rt + 1 k = I 1 - tk

It is a matter of a simple exercise involving gamma and beta functions to
show that (2.14) and (2.15) are equivalent, and therefore (1.3) holds for
1== 1. If I is any odd polynomial then by symmetry all sums and integrals
in (1.3) equal 0 and thus (1.3) holds again. Now let I be an even
polynomial of degree at most 2n - 1 vanishing at ± 1. Then by the Gauss-­
Jacobi quadrature formula (1.3) is equivalent to

f/(X)(1-x 2Y dx

n(2n-l) II
= (n - rt _ 1)(2n + 2e< + 1) _ /(x)( 1- X2)~ dx

2rt( 1 + e<) II. 2 ~ - I

- (n - e< _ 1)(2n + 2rt + 1) _J (x)( 1- x ) dx

1 II
+2(n-rt-l)(2n+2rt+1) _1j"(X)(1-X2)~+ldx,

that is,

(2rt+1)f' l(x)(l-x2Ydx=2rtf' l(x)(l-x2)~-'dx
-I -I

1 f'- j"(x)(1 - x 2y+ I dx.
2(1 + rt)_1

(2.16)
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Twofold integration by parts of the second integral on the right side of
(2.16) immediately demonstrates the validity of (2.16), and hence (1.3)
holds again. Iff(x)=(P;,~)(x))2 then (1.3) becomes

rI (P;,~)(X))2(1-x2y dx

=_22H1 r(a+I)r(a+2)F(n+l) (P(~)(I))2
(n-a-l)(2n+2a+l)F(n+2a+l) n

+(n-a-l)(~n+2a+l)k~1 (l-t~Pk(P~~)(td)2. (2.17)

Applying now (4.3.3) and (15.3.1) in [6, pp.68 and 352J to (2.17), for­
mula (1.3) follows again. Finally, if / is an arbitrary polynomial of degree
at most 2n + 1 then we can decompose it into / =II +/2 +I3 +/4 where II is
constant, /2 is odd, f~ is an even polynomial of degree at most 2n - 1
vanishing at ± I, and f~ is proportional to (p~~))2. Since we have proved
(1.3) for each I (i = 1,2, 3, 4) in this decomposition, the validity of (1.3)
follows for every polynomial f of degree at most 2n + 1.
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