A New Quadrature Formula Associated with the Ultraspherical Polynomials

PAUL NEVAI*

Department of Mathematics, The Ohio State University, Columbus, Ohio 43210, U.S.A.

AND

A. K. VARMA

Department of Mathematics, University of Florida, Gainesville, Florida 32611, U.S.A.

Communicated by Oved Shisha

Received October 9, 1984

DEDICATED TO THE MEMORY OF GÉZA FREUD

A new Birkhoff-type quadrature formula associated with the extended ultraspherical nodes is obtained and applied to evaluate the second kind of ultraspherical polynomials at the endpoints of the interval of orthogonality. © 1987 Academic Press, Inc.

1

For a given $\alpha > -1$ let $\{P_n^{(\alpha)}\}_{n=0}^{\infty}$ denote the system of ultraspherical polynomials orthogonal in [-1, 1] with respect to the weight function $(1-x^2)^{\alpha}$ and normalized by $P_n^{(\alpha)}(1) = \binom{n+\alpha}{n}$. In [8] the second of us obtained some new quadrature formulas based on the zeros

$$1 = x_{1n} > x_{2n} > \cdots > x_{nn} = -1$$

of

$$\pi_n(x) = (1-x^2) P_{n-1}^{(0)'}(x).$$

* This author's research was supported by the National Science Foundation under Grant MCS-83-00882.

In particular, it was proved in [8, p. 799] that the quadrature formula

$$\int_{-1}^{1} f(x) dx = \frac{3}{n(2n-1)} [f(1) + f(-1)] + \frac{2(2n-3)}{n(n-2)(2n-1)} \sum_{k=2}^{n-1} \frac{f(x_{kn})}{(P_{n-1}^{(0)}(x_{kn}))^{2}} + \frac{1}{n(n-1)(n-2)(2n-1)} \sum_{k=2}^{n-1} \frac{(1-x_{kn}^{2})f''(x_{kn})}{(P_{n-1}^{(0)}(x_{kn}))^{2}}$$
(1.1)

is exact for all polynomials f of degree at most 2n-1, and thereby problems 36-39 in Turán [7] were solved.

The object of this paper is to find quadrature formulas analogous to (1.1). Let us denote by

$$1 = t_{0n}^{(\alpha)} > t_{1n}^{(\alpha)} > \cdots > t_{nn}^{(\alpha)} > t_{n+1,n}^{(\alpha)} = -1$$

the zeros of $(1 - x^2) P_n^{(\alpha)}(x)$, and let λ_{kn} , k = 1, 1, ..., n, be the Cotes numbers of the Gauss-Jacobi quadrature process associated with the ultraspherical weight function, that is,

$$\lambda_{kn}^{(\alpha)} = \int_{-1}^{1} \frac{P_n^{(\alpha)}(x)}{(P_n^{(\alpha)'}(t_{kn}))(x - t_{kn})} (1 - x^2)^{\alpha} dx.$$
(1.2)

Our main result is the following

THEOREM 1. For every $\alpha > -1$ and n = 1, 2, ... the quadrature formula

$$\int_{-1}^{1} f(x)(1-x^{2})^{\alpha} dx$$

$$= \frac{-2^{2\alpha}\Gamma(\alpha+1) \Gamma(\alpha+2) \Gamma(n+1)}{(n-\alpha-1)(2n+2\alpha+1) \Gamma(n+2\alpha+1)} [f(1)+f(-1)]$$

$$+ \frac{n(2n-1)}{(n-\alpha-1)(2n+2\alpha+1)} \sum_{k=1}^{n} \lambda_{kn}^{(\alpha)} f(t_{kn}^{(\alpha)})$$

$$- \frac{2\alpha(1+\alpha)}{(n-\alpha-1)(2n+2\alpha+1)} \sum_{k=1}^{n} \frac{\lambda_{kn}}{1-(t_{kn}^{(\alpha)})^{2}} f(t_{kn}^{(\alpha)})$$

$$+ \frac{1}{2(n-\alpha-1)(2n+2\alpha+1)} \sum_{k=1}^{n} (1-t_{kn}^{(\alpha)})^{2} \lambda_{kn}^{(\alpha)} f''(t_{kn}^{(\alpha)}) \quad (1.3)$$

is exact for all polynomials f of degree at most 2n + 1.

The proof of Theorem 1 is essentially different from the one given for (1.1) in [8], and the main idea of the proof is to apply the Gauss-Jacobi quadrature formula [6, p. 47] and Theorem 3 which is stated below.

Theorem 1 can be applied to evaluate the second kind of ultraspherical polynomials at ± 1 . Let us define the second kind of ultraspherical polynomials $Q_n^{(\alpha)}$ associated with $P_n^{(\alpha)}$ by the formula

$$Q_n^{(\alpha)}(x) = \int_{-1}^1 \frac{P_n^{(\alpha)}(x) - P_n^{(\alpha)}(t)}{x - t} (1 - t^2)^{\alpha} dt.$$
(1.4)

It is well known that the second kind (or numerator) of polynomials $Q_n^{(\alpha)}$ satisfies the same recurrence formula which generates $P_n^{(\alpha)}$ except that the initial data are $Q_0^{(\alpha)} = 0$ and $Q_1^{(\alpha)} = \sqrt{\pi} \Gamma(\alpha + 2)/\Gamma(\alpha + \frac{3}{2})$ (see, e.g., [2-4, 6]). By the Gauss-Jacobi quadrature formula [6, p. 47] we can express (1.4) as

$$Q_n^{(\alpha)}(x) = P_n^{(\alpha)}(x) \sum_{k=1}^n \frac{\lambda_{kn}^{(\alpha)}}{x - t_{kn}^{(\alpha)}},$$

and applying (1.3) with $f(t) \equiv 1 + t$ we obtain after some elementary computations the following

THEOREM 2. Let
$$a > -1$$
, $\alpha = 0$. Then, for $n = 1, 2, ...,$
 $(\pm 1)^n Q_n^{(\alpha)}(\pm 1) = \frac{\sqrt{\pi}}{\alpha \Gamma(\alpha \pm \frac{1}{2})} \frac{\Gamma(n + \alpha \pm 1)}{n!} - \frac{2^{2\alpha} \Gamma(\alpha \pm 1)}{\alpha} \frac{\Gamma(n + \alpha \pm 1)}{\Gamma(n \pm 2\alpha \pm 1)}$

Remark. Theorem 2 may also be obtained from generating functions for the second kind of ultraspherical polynomials [1, 2]. This was pointed out to us by both R. Askey and M. Ismail in independent private communications. R. Askey has also informed us that a generalization of Theorem 2 was proved in [9].

Some special cases of Theorem 1 deserve individual attention. Namely, when $\alpha = -\frac{1}{2}$ then (1.3) becomes

$$\int_{-1}^{1} f(x)(1-x^{2})^{-1/2} dx = -\frac{\pi}{4(2n-1)} [f(1)+f(-1)] + \frac{\pi}{n} \sum_{k=1}^{n} \left(1 + \frac{1}{2n(2n-1)(1-(t_{kn}^{(-1/2)})^{2})}\right) f(t_{kn}^{(-1/2)}) + \frac{\pi}{2n^{2}(2n-1)} \sum_{k=1}^{n} (1-(t_{kn}^{(-1/2)})^{2}) f''(t_{kn}^{(-1/2)})$$
(1.5)

640/50/2-4

where $t_{kn}^{(-1/2)} = \cos(k - \frac{1}{2}) (\pi/n)$ are the zeros of the Chebyshev polynomials, whereas for $\alpha = 0$ formula (1.3) takes the form

$$\int_{-1}^{1} f(x) dx = -\frac{1}{(n-1)(2n+1)} [f(1) + f(-1)] + \frac{2n(2n-1)}{(n-1)(2n+1)} \sum_{k=1}^{n} \frac{1}{(1-t_{kn}^2)(P'_n(t_{kn}))^2} f(t_{kn}) + \frac{1}{(n-1)(2n+1)} \sum_{k=1}^{n} \frac{1}{(P'_n(t_{kn}))^2} f''(t_{kn}) \quad (1.6)$$

where t_{kn} are the zeros of the Legendre polynomials $P_n \equiv P_n^{(0)}$.

The proof of Theorem 1 is based on the following

THEOREM 3. Let $\alpha > -1$ and $n = 1, 2, \dots$. Then the quadrature formula

$$\int_{-1}^{1} f(x)(1-x^{2})^{\alpha} dx$$

$$= 2^{2\alpha} \frac{(\Gamma(\alpha+1))^{2} \Gamma(n+1)}{(2n+2\alpha+1) \Gamma(n+2\alpha+1)} [f(1)+f(-1)]$$

$$+ \frac{2}{(2n+2\alpha+1)} \sum_{k=1}^{n} \left(n + \frac{\alpha}{1-(t_{kn}^{(\alpha)})^{2}}\right) \lambda_{kn}^{(\alpha)} f(t_{kn}^{(\alpha)})$$

$$- \frac{1}{2n+2\alpha+1} \sum_{k=1}^{n} t_{kn}^{(\alpha)} \lambda_{kn}^{(\alpha)} f'(t_{kn}^{(\alpha)})$$
(1.7)

holds for every polynomial f of degree at most 2n + 1.

2

In this section we will prove Theorems 1 and 3. For the sake of brevity we will omit some unessential indices in the formulas for example, we will write λ_k and t_k instead of $\lambda_{kn}^{(\alpha)}$ and $t_{kn}^{(\alpha)}$, respectively.

Proof of Theorem 3. Fix $\alpha > -1$ and n = 1, 2, ..., and let f be an arbitrary polynomial of degree at most 2n + 1. Then by the Hermite interpolation formula (see, e.g., [5])

$$f(x) = \sum_{k=0}^{n+1} f(t_k) r_k(x) + \sum_{k=1}^n f'(t_k) q_k(x)$$
(2.1)

where

$$r_0(x) = {\binom{n+\alpha}{n}}^{-2} 2^{-1} (1+x) (P_n^{(\alpha)}(x))^2, \qquad (2.2)$$

$$r_{n+1}(x) = {\binom{n+\alpha}{n}}^{-2} 2^{-1} (1-x) (P_n^{(\alpha)}(x))^2, \qquad (2.3)$$

and for k = 1, 1, ..., n

$$r_k(x) = \frac{1 + c_k(x - t_k)}{1 - t_k^2} (1 - x^2) l_k^2(x), \qquad (2.4)$$

$$c_k = -2\alpha \frac{t_k}{1 - t_k^2},$$
 (2.5)

$$q_k(x) = \frac{(x - t_k)}{1 - t_k^2} (1 - x^2) l_k^2(x), \qquad (2.6)$$

and

$$l_k(x) = \frac{P_n^{(\alpha)}(x)}{P_n^{(\alpha)'}(t_k)(x - t_k)}.$$
(2.7)

We can apply (2.2), (2.3), and formula (4.33) in [6, p. 68] to obtain

$$\int_{-1}^{1} r_k(x)(1-x^2)^{\alpha} dx$$

= $2^{2\alpha} \frac{(\Gamma(\alpha+1))^2 \Gamma(n+1)}{(2n+2\alpha+1) \Gamma(n+2\alpha+1)}, \quad k = 0, n+1.$ (2.8)

It follows from (1.2), (2.7), and orthogonality relations that

$$\int_{-1}^{1} (x - t_k) \, l_k^2(x) (1 - x^2)^{\alpha} \, dx = 0 \tag{2.9}$$

and

$$\int_{-1}^{1} l_k(x)(1-x^2)^{\alpha} dx = \int_{-1}^{1} l_k^2(x)(1-x^2)^{\alpha} dx = \lambda_k$$
(2.10)

for k = 1, 2, ..., n. Applying (2.6), (2.7), and (2.9) we obtain

$$\int_{-1}^{1} q_k(x)(1-x^2)^{\alpha} dx$$

= $(1-t_k^2)^{-1} \int_{-1}^{1} (x-t_k)(t_k^2-x^2) l_k^2(x)(1-x^2)^{\alpha} dx$
= $-(1-t_k^2)^{-1} (P_n^{(\alpha)'}(t_k))^{-2} \int_{-1}^{1} (x+t_k)(P_n^{(\alpha)}(x))^2(1-x^2)^{\alpha} dx$

and thus by (4.3.3) and (15.3.1) in [6, pp. 68 and 352, resp.]

$$\int_{-1}^{1} q_k(x)(1-x^2)^{\alpha} dx = -\frac{1}{2n+2\alpha+1} t_k \lambda_k$$
(2.11)

for k = 1, 2, ..., n. By (2.4), (2.5), (2.6), and (2.11) we have

$$\int_{-1}^{1} r_k(x)(1-x^2)^{\alpha} dx$$

= $(1-t_k^2)^{-1} \int_{-1}^{1} l_k^2(x)(1-1x^2)^{\alpha+1} dx$
+ $\frac{2\alpha t_k^2 \lambda_k}{(2n+2\alpha+1)(1-t_k^2)},$ (2.12)

k = 1, 2, ..., n. Using (2.7), (2.9), and (2.10) we get

$$\int_{-1}^{1} l_{k}^{2}(x)(1-x^{2})^{\alpha+1} dx$$

= $\int_{-1}^{1} l_{k}^{2}(x)(1-t_{k}^{2}+t_{k}^{2}-x^{2})(1-x^{2})^{\alpha} dx$
= $(1-t_{k}^{2}) \lambda_{k} - \int_{-1}^{1} (x-t_{k})^{2} l_{k}^{2}(x)(1-x^{2})^{\alpha} dx$
= $(1-t_{k}^{2}) \lambda_{k} - (P_{n}^{(\alpha)'}(t_{k}))^{-2} \int_{-1}^{1} (P_{n}^{(\alpha)}(x))^{2}(1-x^{2})^{\alpha} dx$

and applying again (4.3.3) and (15.3.1) in [6] we obtain from (2.12)

$$\int_{-1}^{1} r_{k}(x)(1-x^{2})^{\alpha} dx$$

$$= \lambda_{k} - \frac{\lambda_{k}}{2n+2\alpha+1} + \frac{2\alpha t_{k}^{2} \lambda_{k}}{(2n+2\alpha+1)(1-t_{k}^{2})}$$

$$= \frac{2n}{2n+2\alpha+1} \lambda_{k} + \frac{2\alpha}{2n+2\alpha+1} \frac{\lambda_{k}}{1-t_{k}^{2}}, \qquad (2.13)$$

k = 1, 2,..., n. Now Theorem 3 follows immediately from (2.1), (2.8), (2.11), and (2.13).

Proof of Theorem 1. Let us fix $\alpha > -1$ and $n = 1, 2, \dots$. If f is identically 1 then by the Gauss-Jacobi quadrature formula (1.3) becomes

$$\int_{-1}^{1} (1-x^{2})^{\alpha} dx$$

$$= -2^{2\alpha+1} \frac{\Gamma(\alpha+1) \Gamma(\alpha+2) \Gamma(n+1)}{(n-\alpha-1)(2n+2\alpha+1) \Gamma(n+2\alpha+1)}$$

$$+ \frac{n(2n-1)}{(n-\alpha-1)(2n+2\alpha+1)} \int_{-1}^{1} (1-x^{2})^{\alpha} dx$$

$$- \frac{2\alpha(1+\alpha)}{(n-\alpha-1)(2n+2\alpha+1)} \sum_{k=1}^{n} \frac{\lambda_{k}}{1-t_{k}^{2}}, \qquad (2.14)$$

whereas by (1.7) and the Gauss-Jacobi quadrature formula

$$\int_{-1}^{1} (1-x^2)^{\alpha} dx = \frac{2^{2\alpha+1} (\Gamma(\alpha+1))^2 \Gamma(n+1)}{(2n+2\alpha+1) \Gamma(n+2\alpha+1)} + \frac{2n}{2n+2\alpha+1} \int_{-1}^{1} (1-x^2)^{\alpha} dx + \frac{2\alpha}{2n+2\alpha+1} \sum_{k=1}^{n} \frac{\lambda_k}{1-t_k^2}.$$
 (2.15)

It is a matter of a simple exercise involving gamma and beta functions to show that (2.14) and (2.15) are equivalent, and therefore (1.3) holds for $f \equiv 1$. If f is any odd polynomial then by symmetry all sums and integrals in (1.3) equal 0 and thus (1.3) holds again. Now let f be an even polynomial of degree at most 2n - 1 vanishing at ± 1 . Then by the Gauss-Jacobi quadrature formula (1.3) is equivalent to

$$\int_{-1}^{1} f(x)(1-x^{2})^{\alpha} dx$$

$$= \frac{n(2n-1)}{(n-\alpha-1)(2n+2\alpha+1)} \int_{-1}^{1} f(x)(1-x^{2})^{\alpha} dx$$

$$- \frac{2\alpha(1+\alpha)}{(n-\alpha-1)(2n+2\alpha+1)} \int_{-1}^{1} f(x)(1-x^{2})^{\alpha-1} dx$$

$$+ \frac{1}{2(n-\alpha-1)(2n+2\alpha+1)} \int_{-1}^{1} f''(x)(1-x^{2})^{\alpha+1} dx,$$

that is,

$$(2\alpha + 1) \int_{-1}^{1} f(x)(1 - x^{2})^{\alpha} dx = 2\alpha \int_{-1}^{1} f(x)(1 - x^{2})^{\alpha - 1} dx$$
$$-\frac{1}{2(1 + \alpha)} \int_{-1}^{1} f''(x)(1 - x^{2})^{\alpha + 1} dx.$$
(2.16)

Twofold integration by parts of the second integral on the right side of (2.16) immediately demonstrates the validity of (2.16), and hence (1.3) holds again. If $f(x) \equiv (P_n^{(\alpha)}(x))^2$ then (1.3) becomes

$$\int_{-1}^{1} (P_n^{(\alpha)}(x))^2 (1-x^2)^{\alpha} dx$$

= $-2^{2\alpha+1} \frac{\Gamma(\alpha+1) \Gamma(\alpha+2) \Gamma(n+1)}{(n-\alpha-1)(2n+2\alpha+1) \Gamma(n+2\alpha+1)} (P_n^{(\alpha)}(1))^2$
+ $\frac{1}{(n-\alpha-1)(2n+2\alpha+1)} \sum_{k=1}^{n} (1-t_k^2) \lambda_k (P_n^{(\alpha)'}(t_k))^2.$ (2.17)

Applying now (4.3.3) and (15.3.1) in [6, pp. 68 and 352] to (2.17), formula (1.3) follows again. Finally, if f is an arbitrary polynomial of degree at most 2n + 1 then we can decompose it into $f = f_1 + f_2 + f_3 + f_4$ where f_1 is constant, f_2 is odd, f_3 is an even polynomial of degree at most 2n - 1vanishing at ± 1 , and f_4 is proportional to $(P_n^{(\alpha)})^2$. Since we have proved (1.3) for each f_i (i = 1, 2, 3, 4) in this decomposition, the validity of (1.3) follows for every polynomial f of degree at most 2n + 1.

References

- 1. W. AL-SALAM, WM. R. ALLAWAY, AND R. ASKEY, Sieved ultraspherical polynomials, *Trans. Amer. Math. Soc.* **284** (1984), 39–55.
- J. BUSTOZ AND M. ISMAIL, The associated ultraspherical polynomials and their q-analogues, Canad. J. Math. 34 (1982), 718–736.
- 3. T. S. CHIHARA, "An Introduction to Orthogonal Polynomials," Gordon & Breach, New York, 1978.
- J. SHERMAN, On the numerators of the convergents of the Stieltjes continued fractions, Trans. Amer. Math. Soc. 35 (1933), 64-87.
- 5. P. Szász, On quasi-Hermite-Fejér interpolation, Acta Math. Acad. Sci. Hungar. 10 (1959), 414-439.
- 6. G. SZEGÖ, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. 23 (1975).
- P. TURÁN, On some open problems of approximation theory, J. Approx. Theory 29 (1980), 23-85.
- A. K. VARMA, On some open problems of P. Turán concerning Birkhoff interpolation, Trans. Amer. Math. Soc. 274 (1982), 797-808.
- 9. R. ASKEY AND B. RAZBAN, An integral for Jacobi polynomials, Simon Stevin 46 (1972–1973), 165–169.